If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x-113=0
a = 2; b = -16; c = -113;
Δ = b2-4ac
Δ = -162-4·2·(-113)
Δ = 1160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1160}=\sqrt{4*290}=\sqrt{4}*\sqrt{290}=2\sqrt{290}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{290}}{2*2}=\frac{16-2\sqrt{290}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{290}}{2*2}=\frac{16+2\sqrt{290}}{4} $
| q^2+20q-21=0 | | 13h-10=16 | | 2-2s=3/5s+13 | | -10u+8.99=-19.7u+18.44+16u | | 3t^2+47t-16=0 | | 2/3(3q+6=8 | | (2x-7)/(x^2-1)=0 | | 15+q/6=-12 | | -17=1+5y+2 | | |9x-2|=|7x+18| | | 5(2d+4=35 | | 6n^2+43n+7=0 | | 127=15+5x/11 | | -10u+8.99=19.7u+18.44+16u | | 8x=32x/4 | | 10x2-11x-6=0 | | 8.7x-1.9=116.96 | | 1/3v-3/2=-7/5 | | 15=15+5x/11 | | 8x+5=-2(x+2)+7 | | x=55-4x/(-3) | | 8-7r=-19r+8 | | 10x-(2x+9)=-3915-4x) | | n-5/5=3 | | 3x-4=1/2(-8+6x) | | 2x+3=8x-1 | | 5x=11(2x-3)/2 | | 8x+8=3(2x-1) | | 5c-9=90-6c | | -3+(-4x)+5/2=1 | | 20+g+20g=11+20g | | 7.4m=6.9 |